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KARYOTYPE OF THE CUBAN LIZARD 
CRICOSAURA TYPICA AND ITS IMPLICA- 
TIONS FOR XANTUSIID PHYLOGENY.- 

Although described nearly 130 years ago, the 
xantusiid lizard Cricosaura typica is very poorly 
known, due largely to its occurrence in a remote 

region of eastern Cuba. Previous studies of xan- 
tusiid relationships have been hampered by the 
absence of chromosome data for this monotypic 
genus, which is morphologically distinct and 

geographically isolated from other members of 
the family (Bezy, 1972; Crother et al., 1986). 
Through a cooperative agreement between 

Pennsylvania State University, the Cuban Mu- 
seum of Natural History, and the University of 
Havana, one of us (SBH) was able to travel to 
the eastern region of Cuba and secure eight 
animals, two of which were returned alive to 
the laboratory for karyotyping. 

These animals (USNM 305440 and 305441), 
both females, were collected 2.8 km north of 
Uvero in Santiago de Cuba province. They were 

injected intraperitoneally with a 0.1% solution 
of colchicine (0.2 ml/g body weight) and were 
sacrificed by cryothermy after six hours. Intes- 
tine, spleen, and gonads were removed and 
minced in a hypotonic (0.8%) sodium citrate 
solution; the cells were recovered and fixed in 
methanol-acetic acid (3:1). Slides were prepared 
using the splash technique (Macgregor and Var- 

ley, 1988), stained with a 0.4% Giemsa stain in 
a potassium phosphate/sodium phosphate buff- 
er, and mounted. 

It has been noted previously that xantusiid 
lizards have a low level of mitotic activity (Bezy, 
1972). We recovered only a few mitotic spreads 
that appeared to be complete (two for animal 
305440; three for 305441), possibly due to the 
fact that bone marrow was not used. Although 
the chromosomes from animal 305440 are 
slightly more condensed, the karyotypes ob- 
tained from each animal are consistent in num- 
ber and morphology (Fig. 1). There are 12 mac- 
rochromosomes and 12 microchromosomes in 
the diploid complement, with a total of 36 chro- 
mosome arms. The macrochromosomes are 
similar in size. Pair 1 is submetacentric, pairs 2 
and 5 are subtelocentric, and pairs 3, 4, and 6 
are metacentric (following the centromere clas- 

sification of Bezy, 1972). The microchromo- 
somes vary in size, with two larger pairs, an 
intermediate pair, and three smaller pairs. 

All other species of xantusiid lizards that have 
been examined have a larger chromosome com- 

plement, in both chromosome and arm num- 
ber. The four species of Xantusia studied have 
a diploid number of 40 (18 macrochromo- 

somes), whereas the eight species of Lepidophy- 
ma studied have either 36 or 38 chromosomes 
(16 or 18 macrochromosomes), except for an 
individual with triploid cells in a unisexual pop- 
ulation of L. flavimaculatum (Bezy, 1972, 1984). 
In addition, both genera have a pair of meta- 
centric chromosomes that are much larger in 
size than any other in the complement; the re- 

maining chromosomes are fairly similar in size 
and are predominately subtelocentric. The ter- 
minal satellite that appears on pair 3 in some 

species of Lepidophyma and Xantusia was not seen 
in any of the Cricosaura spreads. Because of the 
differences in karyotype morphology between 
Cricosaura and these genera, it was not possible 
to determine homology between the individual 
chromosomes. Therefore, Cricosaura could not 
be placed in the karyotype phylogeny proposed 
by Bezy (1972). However, by comparison with 
taxa outside the Xantusiidae, some phyloge- 
netic information can be obtained from the Cri- 
cosaura karyotype. 

Most workers agree that the Iguania (Agam- 
idae, Chamaeleontidae, and Iguanidae) is the 
sister taxon to the remaining squamates (Estes 
et al., 1988; Presch, 1988; Schwenk, 1988). 
The karyotype formula of 12 macrochromo- 
somes and 24 microchromosomes occurs in each 
of the families comprising the Iguania. This for- 
mula also is found in members of the Anguidae, 
Teiidae, and Cordylidae (karyotype numbers of 
dibamids, snakes, and amphisbaenids are not 
considered here because of their uncertain re- 
lationships [Estes et al., 1988]). Because of this 
broad distribution among lizard families, in- 

cluding a number of basal lineages (as deter- 
mined by morphology), the 12 + 24 formula 
has been considered to represent the primitive 
lizard karyotype (Gorman, 1973; Bickham, 
1984; Olmo, 1986). This has been challenged 
by King (1981) who proposed that the primitive 
karyotype consisted of a large number of ac- 
rocentric chromosomes and that karyotypic 
evolution occurs mainly through fusion, with 
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Fig. 1. Karyotypes of two female Cricosaura typica: (A) USNM 305440; (B) USNM 305441. The scale bar 
represents 10 ,m. 

fission playing a minimal role. The number of 
macrochromosomes in Cricosaura (12), is not in- 
consistent with the first hypothesis, although its 

karyotype has fewer microchromosomes (12) 
than does the proposed primitive karyotype. 

Based upon morphological data, the family 
Xantusiidae most recently has been placed in 
the Scincomorpha, either as a member of the 
Lacertoidea, the sister group to the Teiidae/ 
Gymnophthalmidae/Lacertidae clade (Estes et 
al., 1988), or as the sister group of the Scincidae 
(Presch, 1988). A sister-group relationship to 
the Gekkota has also been suggested (Schwenk, 
1988). Although the members of the Gekkota 
appear to have a unique and highly derived 
karyotype (most chromosomes are acrocentric 
and there is no clear differentiation between 
macro- and microchromosomes), all the scin- 
comorph (Lacertoidea + Scincoidea) families 
except the Lacertidae (Gorman, 1970) have taxa 
with a chromosome complement consisting of 
12 or 10 bi-armed macrochromosomes. The taxa 

with that karyotype are often considered to be 
basal within their respective groups (Deweese 
and Wright, 1970; Olmo and Odierna, 1980; 
Capriglione, 1987), lending support to the hy- 
pothesis that the primitive number of macro- 
chromosomes is 12, as seen in Cricosaura. 

A recent analysis of the relationships within 
the Xantusiidae using DNA sequence data from 
two mitochondrial genes (Hedges et al., 1991) 
found that Cricosaura is the basal clade within 
the family and the sister group to Xantusia + 

Lepidophyma, rather than the sister group of Lep- 
idophyma (exclusive of Xantusia) as suggested by 
an analysis of morphological data (Crother et 
al., 1986). The karyotype data are consistent 
with the phylogeny derived from DNA se- 

quence data. The karyotype of Cricosaura typica 
could have been transformed into that of the 
other genera through a series of fissions that 
reduced the macrochromosomes and gave rise 
to additional macrochromosomes and micro- 
chromosomes. Other information indicating 
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chromosome homology, such as banding, is 
needed to further illuminate chromosome evo- 
lution within the Xantusiidae. 
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FREEZE TOLERANCE AS AN OVERWIN- 
TERING ADAPTATION IN COPE'S GREY 
TREEFROG (HYLA CHRYSOSCELIS).-Many 
temperate zone ectotherms are confronted with 
severe environmental challenges during winter. 

Aquatic forms usually are protected from freez- 

ing temperatures owing to the high thermal 

buffering capacity of water. Terrestrial verte- 
brate ectotherms generally avoid extreme win- 
ter temperatures by hibernating within insulat- 
ed refuges below the frostline; however, some 

may be exposed to potentially lethal environ- 
mental temperatures. Those overwintering 
above the frostline must survive either by ex- 
tensive supercooling or by tolerating the for- 
mation of ice within body tissues. 

Deep and prolonged supercooling is a major 
overwintering adaptation of many terrestrial in- 
vertebrates (Lee, 1989). However, the biophys- 
ical constraints of large body mass (i.e., water 
volume) preclude this strategy for most verte- 
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