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A well-known issue in phylogenetics is discordance among gene trees, species trees, morphology, and
other data types. Gene-tree discordance is often caused by incomplete lineage sorting, lateral gene trans-
fer, and gene duplication. Multispecies-coalescent methods can account for incomplete lineage sorting
and are believed by many to be more accurate than concatenation. However, simulation studies and
empirical data have demonstrated that concatenation and species tree methods often recover similar
topologies. We use three popular methods of phylogenetic reconstruction (one concatenation, two spe-
cies tree) to evaluate relationships within Teiidae. These lizards are distributed across the United
States to Argentina and the West Indies, and their classification has been controversial due to incomplete
sampling and the discordance among various character types (chromosomes, DNA, musculature, osteol-
ogy, etc.) used to reconstruct phylogenetic relationships. Recent morphological and molecular analyses of
the group resurrected three genera and created five new genera to resolve non-monophyly in three his-
torically ill-defined genera: Ameiva, Cnemidophorus, and Tupinambis. Here, we assess the phylogenetic
relationships of the Teiidae using ‘“next-generation” anchored-phylogenomics sequencing. Our final
alignment includes 316 loci (488,656 bp DNA) for 244 individuals (56 species of teiids, representing all
currently recognized genera) and all three methods (ExaML, MP-EST, and ASTRAL-II) recovered essen-
tially identical topologies. Our results are basically in agreement with recent results from morphology
and smaller molecular datasets, showing support for monophyly of the eight new genera.
Interestingly, even with hundreds of loci, the relationships among some genera in Tupinambinae remain
ambiguous (i.e. low nodal support for the position of Salvator and Dracaena).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

(Edwards, 2009; Maddison, 1997). Traditional approaches to using
molecular data for phylogenetic estimation involve the use of con-

Discordant phylogenetic signal in different data partitions (such
as morphological and molecular datasets) has long been both a
nuisance and a subject of great interest to systematists (Wiens,
1998). In particular, phylogeneticists have long recognized the
potential for discordance between a gene tree and its species tree
(Goodman et al., 1979; Pamilo and Nei, 1988). Factors that may
contribute to this phenomenon include incomplete lineage sorting
(ILS), lateral gene transfer, and gene duplication and extinction
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catenation, where multiple loci are linked together in a superma-
trix. More recently, researchers have favored methods that
attempt to account for some of the known sources of gene tree/
species tree discordance.

Specifically, modeling the multispecies coalescent can account
for the effects of ILS and a summary for many of these algorithms
was provided by Tonini et al. (2015). The superiority of newer
methods which account for potential error caused by ILS has been
demonstrated theoretically, however, specific conditions under
which concatenation would result is a less accurate topology are
unclear. Some simulation studies show that concatenation often
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performs as well or better than methods that attempt to control for
ILS (Tonini et al., 2015), particularly when gene trees have poor
phylogenetic signal or the level of ILS is low (Mirarab et al.,
2014). In addition, many empirical studies show strong congruence
between these methods (Berv and Prum, 2014; Pyron et al., 2014;
Thompson et al., 2014). The use of multiple approaches to phyloge-
netic reconstruction is especially important for groups in need of
taxonomic realignment.

The lizard family Teiidae consists of 151 species spread across
18 genera, with species richness as follows: Ameiva (13), Ameivula
(10), Aspidoscelis (41), Aurivela (2), Callopistes (2), Cnemidophorus
(19), Contomastix (5), Crocodilurus (1), Dicrodon (3), Dracaena (2),
Glaucomastix (4), Holcosus (10), Kentropyx (9), Medopheos (1), Pholi-
doscelis (19), Salvator (3), Teius (3), and Tupinambis (4) (Uetz and
Hosek, 2016). These lizards are widely distributed across the Amer-
icas and West Indies and ecologically characterized as diurnal, ter-
restrial, or semi-aquatic, and active foragers (Presch, 1970; Vitt and
Pianka, 2004). Some of the earliest work on teiid systematics gath-
ered genera previously scattered across 27 families, and organized
them into four groups within Teiidae (Boulenger, 1885). Three of
the groups consisted of various genera of “microteiids” (currently
Gymnophthalmidae), while the “macroteiids” that comprised the
remaining group were distinct based on the condition of nasal
scales (anterior nasals not separated medially by a frontonasal),
well-developed limbs, and a moderate to large body size. Later
morphological work recognized the macroteiids as a distinct sub-
family within Teiidae consisting of two tribes: Teiini and Tupinam-
bini (Presch, 1970, 1974). Eventually, Presch (1983) reduced
Teiidae to the macroteiids, and placed the microteiids in
Gymnophthalmidae.

Though recent molecular and morphological studies consis-
tently resolve Teiidae and Gymnophthalmidae as separate,
monophyletic groups (Conrad, 2008; Pellegrino et al., 2001;
Pyron, 2010; Reeder et al., 2015; Wiens et al., 2012), earlier works
had questioned this division due to a lack of synapomorphic char-
acters (Harris, 1985; Myers and Donnelly, 2001). Separate analyses
of chromosomal (Gorman, 1970), integumental (Vanzolini and
Valencia, 1965), myological (Rieppel, 1980), neurological
(Northcutt, 1978), osteological (Presch, 1974; Veronese and
Krause, 1997), and mitochondrial DNA (Giugliano et al., 2007), con-
sistently resolve two subfamilies: Tupinambinae (large tegus) and
Teiinae (smaller whiptails and racerunners) (Table 1). Other stud-

Table 1
Taxonomic authorities for teiid subfamilies (Costa et al., 2016) and genera (Harvey
et al, 2012).

Taxon Taxonomic Authority
Teiidae Gray (1827)
Teiinae Gray (1827)

Ameiva Meyer (1795)
Ameivula Harvey et al. (2012)
Aspidoscelis Fitzinger (1843)
Aurivela Harvey et al. (2012)
Cnemidophorus Wagler (1830)
Contomastix Harvey et al. (2012)
Dicrodon Duméril and Bibron (1839)
Holcosus Cope (1862)
Glaucomastix Fitzinger (1843)
Kentropyx Spix (1825)
Medopheos Harvey et al. (2012)
Pholidoscelis Fitzinger (1843)

Teius Merrem (1820)
Tupinambinae Bonaparte (1831)

Callopistes Gravenhorst (1837)
Crocodilurus Spix (1825)

Dracaena Daudin (1801)

Salvator Duméril and Bibron (1839)
Tupinambis Daudin (1802)

ies did not find support for these groups (Moro and Abdala, 2000),
and have recommended transferring Callopistes to Teiinae
(Teixeira, 2003), or recognizing a subfamily Callopistinae (Harvey
et al., 2012).

Hypotheses of the phylogenetic relationships among genera
within these subfamilies have also been discordant. For Tupinam-
binae, studies based on chromosomes (Gorman, 1970), external
morphology (Vanzolini and Valencia, 1965), and trigeminal mus-
cles (Rieppel, 1980), support a sister relationship between
Tupinambis and Dracaena, whereas osteological data recover a close
relationship between Tupinambis and Crocodilurus (Presch, 1974).
Recent studies, however, were unable to resolve relationships
among these genera with high nodal support (Giugliano et al.,
2007; Harvey et al., 2012).

Within Teiinae, Reeder et al. (2002) coined the term “cnemido
phorines,” referring to a clade comprising Ameiva, Aspidoscelis, Cne-
midophorus, and Kentropyx (Ameivula, Aurivela, Contomastix, Glau-
comastix, Holcosus, Medopheos, and Pholidoscelis were described
later but also belong in this group), and the monophyly of this
group has been supported in other studies as well (Giugliano
et al.,, 2007; Presch, 1974), but see Harvey et al. (2012). Generic
relationships among cnemidophorine genera and others within
Teiinae (Teius and Dicrodon) are unclear. Much of the confusion
stems from repeated findings of paraphyly within the subfamily,
most notably among members nested in Cnemidophorus and
Ameiva (Giugliano et al, 2006; Gorman, 1970; Harvey et al,,
2012; Reeder et al., 2002).

Recent analyses of morphology restricted the genus Ameiva to
cis-Andean (east of Andes Mountains) South America and the West
Indies, while 11 species from trans-Andean South America and
Central America were placed in the resurrected genus Holcosus
and the new genus Medopheos (Harvey et al., 2012). That study
scored 742 specimens (101 species and subspecies) of teiids for
137 morphological characters. Additional taxonomic changes pro-
posed by Harvey et al. (2012) and a molecular study by Goicoechea
et al. (2016) include four new genera (Ameivula, Aurivela, Con-
tomastix, and Glaucomastix) to resolve non-monophyly within Cne-
midophorus, and one resurrected genus (Salvator) to accommodate
a “southern” clade of Tupinambis. Unfortunately, many of these
recommendations have little or no nodal support (BS < 70), partic-
ularly in the morphological analysis (Harvey et al., 2012). The
results of Harvey et al. (2012)'s morphological analysis were
mostly corroborated by a large-scale molecular analysis of Squa-
mata (Pyron et al., 2013). However, that study only used the avail-
able data generated in the other studies cited above, and was thus
limited in taxonomic sampling and resolving power for many
nodes.

The first combined analysis of multiple datasets (mtDNA, mor-
phology, and allozymes) recovered one species of Central American
“Ameiva” (Holcosus quadrilineatus) to form a clade with South
American Ameiva (bootstrap support [BS] = 91), while another spe-
cies from Central America (Holcosus undulatus) was recovered as
the sister group to a large South American clade (Cnemidophorus
+ Kentropyx), but with no support (BS < 50; Reeder et al., 2002).
These authors also found that the two West Indian taxa were
recovered as part of a clade with mostly North American Aspi-
doscelis, but with weak support (BS = 73). A more extensive phylo-
genetic study of West Indian Ameiva found that this island
radiation was more closely related to Central American Holcosus
than to South American Ameiva ameiva, though this finding was
not well supported (BS=50; Hower and Hedges, 2003).
Goicoechea et al. (2016) also recovered a non-monophyletic
Ameiva in their molecular study of Gymnophthalmoidea and resur-
rected the genus Pholidoscelis for the Caribbean species. However,
their matrix had a high proportion of missing data, and results dif-
fered substantially among concatenated analyses, including
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maximum likelihood and dynamically-optimized maximum parsi-
mony. Thus, the relationships and taxonomy of Teiidae have yet to
be rigorously evaluated using a large multi-locus molecular dataset
and dense taxonomic sampling.

The purpose of this study is to assess the phylogenetic relation-
ships within Teiidae using a “next-generation” sequencing (NGS)
anchored phylogenomics approach. This will provide an indepen-
dent test of the findings and taxonomy proposed by Harvey et al.
(2012) and Goicoechea et al. (2016). Our study recovers some
well-supported differences in the higher-level phylogeny of Tei-
idae, but we also recover much of the phylogenetic structure pro-
posed by Harvey et al. (2012).

2. Materials and methods
2.1. Anchored phylogenomics probe design

The original 512 anchored hybrid-enrichment loci developed by
Lemmon et al. (2012) for vertebrate-wide sampling have been fur-
ther refined to a set of 394 loci ideal for Amniote phylogenomics.
Probe sets specific to birds (Prum et al., 2015) and snakes (Ruane
et al., 2015) have subsequently been designed. In order to improve
the capture efficiency for Teiidae, we developed a lizard-specific
probe set as follows. First, lizard-specific sequences were obtained
from the Anolis carolinensis genome (UCSC genome browser) using
the anoCar2 probe coordinates of Ruane et al. (2015). DNA
extracted from the black and white tegu lizard, Salvator merianae
(voucher CHUNBO00503), was prepared for sequencing following
Lemmon et al. (2012) and sequenced on one Illumina PE100 bp
lane (~15x coverage) at Hudson Alpha Institute for Biotechnology
(http://hudsonalpha.org). Reads passing the CASAVA quality filter
were used to obtain sequences homologous to the Anolis probe
region sequences. After aligning the Anolis and Salvator sequences
using MAFFT (Katoh and Toh, 2008), alignments were trimmed to
produce the final probe region alignments, and probes were tiled
at 1.5x tiling density per species. Probe alignments and sequences
are available in Dryad repository doi:http://dx.doi.org/10.5061/
dryad.d4d5d.

2.2. Data collection and assembly

Phylogenomic data were generated by the Center for Anchored
Phylogenetics (www.anchoredphylogeny.com) using the anchored
hybrid enrichment methodology described by Lemmon et al.
(2012). This approach uses probes that bind to highly conserved
anchor regions of vertebrate genomes with the goal of sequencing
the less conserved flanking regions. Targeting these variable
regions can produce hundreds of unlinked loci from across the gen-
ome that are useful at a diversity of phylogenetic timescales. DNA
extracts were sheared to a fragment size of 150-300 bp using a
Covaris E220 Focused-ultrasonicator. Indexed libraries were then
prepared on a Beckman-Coulter Biomek FXp liquid-handling robot
following a protocol adapted from Meyer and Kircher (2010); with
SPRIselect size-selection after blunt-end repair using a 0.9x ratio
of bead to sample volume. Libraries were then pooled in groups
of 16 samples for hybrid enrichment using an Agilent Custom
SureSelect kit (Agilent Technologies) that contained the probes
described above. The enriched library pools were then sequenced
on six PE150 Illumina HiSeq2000 lanes by the Translational Science
Laboratory in the College of Medicine at Florida State University.

Paired reads were merged following Rokyta et al. (2012), and
assembled following Ruane et al. (2015). After filtering out consen-
sus sequences generated from fewer than 100 reads, sets of orthol-
ogous sequences were obtained based on pairwise sequence
distances as described by Ruane et al. (2015). Orthologous sets

containing fewer than 155 sequences were removed from further
analysis. Sequences were then aligned using MAFFT (Katoh and
Standley, 2013; - genafpair - maxiterate 1000) and trimmed fol-
lowing Ruane et al. (2015), with good sites identified as those con-
taining >30% identity, and fewer than 25 missing/masked
characters required for an alignment site to be retained.

2.3. Phylogenetic analyses

All phylogenetic analyses (except ASTRAL-II; see below) were
performed using resources from the Fulton Supercomputing Lab
at Brigham Young University. A maximum likelihood tree was esti-
mated with a Gamma model of rate heterogeneity (median was
used for the discrete approximation) from the concatenated data-
set of all loci with ExaML v3.0.15 (Kozlov et al., 2015). The k means
option (Frandsen et al., 2015) in PartitionFinder2 was used to par-
tition the data based on similarity in models of molecular evolution
(Lanfear et al., 2012). Parsimony and random starting trees (N = 40)
were generated in RaxML v8.2.8 (Stamatakis, 2014) and perfor-
mance examined using Robinson-Foulds (RF) distances. Because
ExaML does not compute bootstrap values, we generated one hun-
dred bootstrap replicate files and Parsimony starting trees in
RaxML using a General Time Reversible Gamma model of rate
heterogeneity (GTRGAMMA). Replicate files and starting trees
were used to produce 100 bootstrapped trees in ExaML, which
were subsequently used to estimate nodal support on our best
ExaML tree (see above) using the —z function and GTRGAMMA
model in RaxML. The ExaML analysis was completed in 5h and
46 min using 20 cores and 1 GB of memory per core on an Intel
Haswell CPU.

Species tree analyses were reconstructed in MP-EST v1.5 (Liu
et al., 2010) and ASTRAL-II v4.7.9 (Mirarab and Warnow, 2015).
For the MP-EST analysis, 100 nonparametric bootstrapped gene
trees per locus were generated in RaxML v7.7.8 (Stamatakis,
2006). Species trees were then estimated from the gene trees by
maximizing a pseudo-likelihood function in MP-EST. Results were
summarized by constructing a maximum clade credibility tree in
the DendroPy package SumTrees (Sukumaran and Holder, 2010),
with nodal support being calculated as the frequency at which
each node was supported across the gene trees. The 100 species
tree analyses in MP-EST ran for ~5 h using 10 cores and 250 MB
of memory per core on an Intel Haswell CPU.

The gene trees with the highest likelihoods from the RaxML
analyses on each locus were combined and used as the input for
analysis in ASTRAL-IL. This method finds the tree that maximizes
the number of induced quartet trees in the set of gene trees that
are shared by the species tree and has shown to be accurate, even
in the presence of incomplete lineage sorting and horizontal gene
transfer (Chou et al., 2015; Davidson et al., 2015). We used the
heuristic search and multi-locus bootstrapping functions for phy-
logenetic reconstruction. Nonparametric bootstrap gene trees gen-
erated in RaxML for the MP-EST analysis were used to estimate
nodal support for the ASTRAL-II analysis. Computations in
ASTRAL-II were complete in less than one hour on a MacBook Pro
with a 2.4 GHz Intel Core i5 processor and 4 GB of memory.

In both MP-EST and ASTRAL-II, a species allele or mapping file
was used to accommodate analysis of multiple individuals per spe-
cies. Due to apparent paraphyly in both Ameivula and Kentropyx in
the ExaML analysis, we made adjustments to not force the mono-
phyly of some species within these genera (Appendix A). Ameivula
jalapensis, A. mumbuca, and A. ocellifera were combined in the “A.
ocellifera complex” and we designated small species group within
Kentropyx. Several non-teiid and gymnophthalmid taxa were
included as outgroups and rooted with Sphenodon punctatus in all
analyses. All of these analyses recovered a monophyletic Teiidae
with strong support, but for clarity, outgroups have been removed
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and trees rooted with gymnophthalmids Cercosaura ocellata and
Potamites ecpleopus (all outgroups can be seen in Appendix B).

3. Results
3.1. Anchored phylogenomics data collection

An average of 1.04 billion bases were obtained for each individ-
ual. Between 6% and 64% of reads mapped to the target loci (aver-
age = 21%). Recovery of the anchor loci was consistently high, with
>95% of loci being recovered for >99% of the samples. A detailed
summary of the assembly results is given in the supplemental file
(Appendix C). Of the 386 orthologous clusters identified, 316 were
retained after alignment, trimming and masking. The final
trimmed alignments containing 244 taxa, 488,656 sites (256,660
variable and 221,800 informative), and only 2.21% missing charac-
ters are available in Dryad repository doi:http://dx.doi.org/10.
5061/dryad.d4d5d.

3.2. Phylogenetic analyses

A summary of the ML tree based on the analysis from ExaML
recovered a well-resolved and well-supported topology (Fig. 1);
the full tree including all individuals is provided as supplementary
material (Appendix B). Basal relationships are highly supported,
including the divergence between Tupinambinae and Teiinae and
the nodes defining these subfamilies. The concatenated analysis
supports a sister relationship between Tupinambis and Crocodilurus
but the placement of Dracaena is ambiguous (BS = 59). Formerly a
member of the genus Tupinambis, Salvator merianae is recovered as
the sister group to a (Dracaena + (Crocodilurus + Tupinambis)) clade,
with a well-supported Callopistes clade recovered as the sister
group to these four genera.

Within the Teiinae, the ExaML reconstruction supports an early
divergence of a strongly supported (Dicrodon + Teius) clade from
the rest of the subfamily. The remaining Teiinae clade (cnemi-
dophorines) is well supported, as are all deep (among genera) rela-
tionships. Aurivela, Contomastix, Glaucomastix, and Ameivula, all
containing species formerly of the genus Cnemidophorus, form a
strongly supported monophyletic group. The only species of Aspi-
doscelis included in the analysis is strongly supported as the sister
group to Holcosus (formerly Central American Ameiva), and jointly
these genera form the sister group to a well-resolved/well-
supported West Indian Pholidoscelis. The trans-Andean Medopheos
edracantha (formerly Ameiva) forms a group with a large clade of
Cnemidophorus + Kentropyx. The two species of South American
Ameiva form a well-supported group, this is the clade sister to
the large (Medopheos + (Cnemidophorus + Kentropyx)) clade. With
our sampling, the eight new teiid genera recognized by Harvey
et al. (2012) and Goicoechea et al. (2016) are resolved as well-
supported clades, but species within some genera (Ameivula and
Kentropyx) are paraphyletic.

Species tree analyses also recovered strongly supported deep
relationships within the Teiidae, including monophyletic Tupinam-
binae and Teiinae subfamilies. Though branching order and species
relationships vary slightly, generic relationships estimated in MP-
EST (Fig. 2) and ASTRAL-II (Fig. 3) are identical to one another
and nearly match the ExaML concatenated analysis, the only differ-
ence being the placement of Dracaena and Salvator. The nodes sup-
porting the position of these taxa, however, are not well supported
in any of the analyses. Nodal support across the trees is generally
high, except for the aforementioned placement of Dracaena and
Salvator and some species relationships among West Indian
Pholidoscelis.

4. Discussion

Taxonomic classification of the Teiidae has been controversial
due to incomplete sampling and the discordance among various
character types (musculature, DNA, osteology, etc.). Using 316
nuclear loci, we present a well-supported molecular phylogeny of
the family that is largely in agreement with taxonomic changes
proposed in a recent extensive morphological study (Harvey
et al., 2012). We aim to stabilize higher-level Teiidae classification,
focusing on the generic level and above. Our results suggest non-
monophyly among species in both Cnemidophorus and Kentropyx
(Fig. 1) though we refrain from addressing species-level taxonomy,
pending more complete sampling. We define crown-group Teiidae
to consist of the extant subfamilies Tupinambinae (Callopistes,
Crocodilurus, Dracaena, Salvator, and Tupinambis) and Teiinae
(Ameiva, Ameivula, Aspidoscelis, Aurivela, Cnemidophorus, Contomas-
tix, Dicrodon, Glaucomastix, Holcosus, Kentropyx, Medopheos, Pholi-
doscelis, and Teius).

Fitzinger (1843: 20) described Aspidoscelis and Pholidoscelis but
these generic names were not widely used until Aspidoscelis was
resurrected by Reeder et al. (2002) and Pholidoscelis by
Goicoechea et al. (2016). In both cases, the authors treated those
generic names as feminine, although we consider them to be mas-
culine. Historically, the gender of taxonomic names ending in -sce-
lis has been confusing, which prompted Steyskal (1971) to write an
article bringing clarity to the issue. In Greek, the ending -scelis is
derived from skelos (Latin transliteration of the Greek ckéAog),
which means legs. In this case, the two genera in question are Lati-
nized compound adjectives, but are treated as singular nouns in
the nominative because they are genera. As such, the ending -scelis
denotes either masculine or feminine gender (Steyskal, 1971).
According to ICZN (1999) Article 30.1.4.2. “a genus-group name
that is or ends in a word of common or variable gender (masculine
or feminine) is to be treated as masculine unless its author, when
establishing the name, stated that it is feminine or treated it as
feminine in combination with an adjectival species-group name.”
Because Fitzinger (1843: 20) did not state the gender of either
name, and did not combine either name with its type species name
(or any species-group name) to indicate gender, these genera must
be treated as masculine. We provide the required emendations to
the spelling of the species-group names of the genera Aspidoscelis
and Pholidoscelis (Appendix D).

4.1. Tupinambinae

Recent taxonomic changes proposed elevating Callopistes to its
own subfamily, because the placement of this genus was basal to
the other subfamilies (Harvey et al., 2012), though C. maculatus
was used to root the tree. Goicoechea et al. (2016) also suggested
the need for a new subfamily, however, the position of Callopistes
outside of Tupinambinae was only recovered in one of their four
analyses. These authors also noted that this proposal contradicts
many previous studies. All three methods of phylogenetic recon-
struction implemented here support Pyron et al. (2013) that there
is no need for changing long-standing subfamilies in the Teiidae by
recognizing Callopistinae, as C. flavipunctatus and C. maculatus con-
sistently form a clade with other Tupinambinae.

Within Tupinambinae, our dataset reveals a close relationship
between Tupinambis and Crocodilurus in concordance with other
studies (Harvey et al., 2012; Presch, 1974) (Figs. 1-3). This finding,
however, contradicts many previous analyses (Gorman, 1970;
Rieppel, 1980; Vanzolini and Valencia, 1965), which support a sis-
ter relationship between Tupinambis and Dracaena, or between
Crocodilurus and Dracaena (Sullivan and Estes, 1997; Teixeira,
2003). This apparent contradiction is likely due to choice of taxa
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complex” represents the paraphyletic relationships of A. ocellifera, A. jalapensis, and A. mumbuca. Kentropyx sc1 includes 10853_Kentropyx_pelviceps and 10608_Ken-
tropyx_calcarata; Kentropyx sc2 includes 10607_Kentropyx_calcarata and 10852_Kentropyx_paulensis; and Kentropyx sc3 includes 13159_Kentropyx_pelviceps, 10595_Ken-
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represents coalescent units.

in prior studies and convergence due to the semiaquatic behavior
of Crocodilurus and Dracaena (Mesquita et al., 2006). The confusing
alpha taxonomy of taxa historically referred to as Tupinambis
(Harvey et al., 2012), was also likely a factor, as many of these
authors failed to provide locality data of specimens, making it
unclear whether specimens of Tupinambis or Salvator were used.
Additionally, the number of recognized species within Tupinam-
bis has changed considerably. Peters and Donoso-Barros (1970)

recognized four species, which were later reduced to two species
by Presch (1973), and re-interpreted again as four by Avila-Pires
(1995). Additional taxa have been described since (Avila-Pires,
1995; Manzani and Abe, 1997, 2002), and seven species are cur-
rently recognized between Salvator and Tupinambis (Uetz and
Hosek, 2016). Mitochondrial DNA shows a deep split between
these two Tupinambinae genera (Fitzgerald et al., 1999), and we
tentatively support the resurrection of the genus Salvator for the
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Fig. 3. ASTRAL-II species tree estimated for the Teiidae from 316 loci. Numbers at nodes indicate BS support values. Colored boxes highlight eight new genera designated by
Harvey et al. (2012) and Goicoechea et al. (2016): Salvator (formerly Tupinambis), Aurivela, Contomastix, Ameivula, Glaucomastix (formerly Cnemidophorus), Medopheos,
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tropyx_altamazonica, and 10599_Kentropyx_calcarata.

southern clade of Tupinambis, due to it being separated from T.
teguixin and T. quadrilineatus in our analyses (Figs. 1-3), but also
recognize that we only include one species of Salvator here and
that more thorough taxon sampling is needed prior to fully sup-
porting recent changes in this group. While changes in species-
level taxonomy and disagreement between data types have lead
to ambiguous relationships among genera, we demonstrate that
some of these relationships are not easily resolved by increasing
amounts of data (i.e. low nodal support for the position of Salvator

and Dracaena). A rapid radiation in the history of these lineages has
likely created a “hard polytomy,” and increasing amounts of DNA
may not resolve these relationships with current methods of phy-
logenetic reconstruction. Empirical studies and theory predict that
adding taxa that diverge near a node of interest can have a greater
effect on phylogenetic resolution than adding more characters
(Prum et al.,, 2015; Townsend and Lopez-Giraldez, 2010). Thus,
including more species of Dracaena and Salvator may improve
the understanding of relationships within Tupinambinae.
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4.2. Teiinae

Phylogenetic relationships within the Teiinae have long been
unsatisfactory due to paraphyly and polyphyly in Ameiva and Cne-
midophorus (Giugliano et al., 2006; Harvey et al., 2012; Reeder
et al., 2002), but due to a lack of dense sampling, few steps have
been taken to address these issues. In an examination of the phy-
logenetic relationships of the genus Cnemidophorus, Reeder et al.
(2002) resurrected the genus Aspidoscelis to accommodate a group
distributed across North and Central America. Note that while we
only include a single species of Aspidoscelis (a genus with 42 spe-
cies) here, monophyly of this group is not in question (Pyron
et al., 2013; Reeder et al., 2002).

Harvey et al. (2012) further divided the South American Cnemi-
dophorus by establishing three new genera (Ameivula, Aurivela, and
Contomastix) and Goicoechea et al. (2016) erected Glaucomastix to
address non-monophyly still remaining in this group (Fig. 3). Their
Cnemidophorus sensu stricto includes species formerly of the “lem-
niscatus complex” distributed across Central America, northern
South America, and islands of the West Indies, while the four
new genera include taxa distributed south and east of the Amazon
River. Our molecular data support the separation of this northern
group and demonstrate a sister relationship with Kentropyx, but
unlike findings of Harvey et al. (2012) which indicate that the three
southern genera are unrelated, our data recover them as a highly-
supported monophyletic group (Fig. 3), bringing into question the
necessity of three new generic designations. Furthermore, our data
do not support the paraphyly of Ameivula as in Goicoechea et al.
(2016). These authors established Glaucomastix for the Ameivula lit-
toralis group (A. abaetensis, A. cyanura, A. littoralis, and A. venete-
cauda) but only included two species and generated no new data
for the genus. The paraphyly of this group was only recovered in
one of four analyses and the nodal support was low (jackknife per-
centage 37).

While many new species of Ameiva have been described in the
previous 12 years (Colli et al., 2003; Giugliano et al., 2013; Koch
et al, 2013; Landauro et al.,, 2015; Ugueto and Harvey, 2011),
few studies have examined phylogenetic relationships within the
genus while including more than a few taxa, and it is clear that his-
torically the group has been polyphyletic and ill-defined (Giugliano
et al., 2006; Harvey et al., 2012; Reeder et al., 2002). Species-level
polyphyly is suggested in at least Ameivula and Kentropyx here
(Fig. 1), and is likely present in other genera with poorly-defined
species, such as Ameiva and Pholidoscelis. However, we cannot
immediately localize the sources of this discordance, which may
include poor species definitions, hybridization, or misidentification
of specimens in the field due to ambiguous diagnostic characters.
Rangewide phylogeographic comparisons will be needed for these
taxa.

Harvey et al. (2012) created the monotypic genus Medopheos for
Ameiva edracantha, and resurrected Holcosus for ten species of
Ameiva spread across Central America and trans-Andean South
America, and a recent study suggests this group may be even more
species-rich (Meza-Lazaro and Nieto-Montes de Oca, 2015). Harvey
et al. (2012) elected to keep the remaining South American and
West Indian species together in Ameiva, though this grouping
was not well supported. In contrast, Goicoechea et al. (2016) resur-
rected Pholidoscelis for the Caribbean ameivas due to paraphyly of
the groups. Our data support the monophyly of these genera
erected to address a historically paraphyletic Ameiva (Figs. 1-3).
The South American group (A. ameiva and A. parecis) is more clo-
sely related to a clade of South American (Medopheos + (Cnemi-
dophorus + Kentropyx)), whereas West Indian Pholidoscelis form
the sister-group to Central American (Holcosus + Aspidoscelis dep-
pei). Relationships among West Indian Pholidoscelis species groups
identified by Hower and Hedges (2003) vary among datasets and

many have low nodal support, suggesting the need for further
study in this group.

4.3. Phylogenetic methods

We used three often-cited algorithms to assess phylogenetic rela-
tionships within Teiidae: ExaML, MP-EST, and ASTRAL-IIL The species
tree methods recovered identical generic relationships and nearly
identical species relationships in the group, the only exception being
the unsupported placement of the (Pholidoscelis exsul + P. wetmorei)
group from the Puerto Rican bank. In the MP-EST analysis, this group
is sister to the P. auberi and P. lineolatus species groups from the
Greater Antilles (Fig. 2), whereas in the ASTRAL-II analysis P. exsul
and P. wetmorei form the sister group to the P. plei species group
located in the Lesser Antilles (Fig. 3). The concatenated ExaML anal-
ysis recovers the same relationships as the ASTRAL-I1 analysis for this
Caribbean genus and only differs in the positions of Dracaena and Sal-
vator. The ExaML results recover a (Salvator + (Dracaena + (Crocodil-
urus + Tupinambis))) (BS = 84; Fig. 1) topology slightly different from
the species tree analyses (Dracaena + (Salvator + (Crocodilurus
+ Tupinambis))) (Figs. 2 and 3).In all analyses, these four genera form
a well-supported monophyletic group but the positions of Dracaena
and Salvator are poorly supported in the MP-EST and ASTRAL-II trees.
In support of simulation studies (Mirarab et al., 2014; Tonini et al.,
2015) and empirical datasets (Berv and Prum, 2014; Pyron et al.,
2014; Thompson et al., 2014) we demonstrate minimal differences
among teiid relationships using concatenation and species tree
methods, and note that these differences are not well supported.
The concordance among methods provides support that the phylo-
genetic hypothesis we propose for Teiidae is robust.

5. Conclusion

We present a well-sampled and well-supported molecular phy-
logeny of the Teiidae and find a high degree of congruence among
our genomic data and morphological data from previous analyses.
While these similarities do not necessarily extend to deep relation-
ships among taxa, we show support for the monophyly of eight
genera resolved with morphology (Harvey et al., 2012) and smaller
molecular datasets (Goicoechea et al., 2016). The large amount of
congruence among methods of tree reconstruction (concatenation
vs. species tree) was also reassuring. Very few differences were
noted among our three phylogenetic trees, and those ambiguities
were generally poorly supported.
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