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Biologists have debated the origin of snakes since the
nineteenth century. One hypothesis suggests that
snakes are most closely related to terrestrial lizards,
and reduced their limbs on land. An alternative
hypothesis proposes that snakes are most closely
related to Cretaceous marine lizards, such as mosa-
saurs, and reduced their limbs in water. A presumed
close relationship between living monitor lizards,
believed to be close relatives of the extinct mosa-
saurs, and snakes has bolstered the marine origin
hypothesis. Here, we show that DNA sequence evi-
dence does not support a close relationship between
snakes and monitor lizards, and thus supports a ter-
restrial origin of snakes.
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1. INTRODUCTION
Living snakes (ca. 3000 sp.) are grouped together with
lizards (ca. 4700 sp.) and amphisbaenians (ca. 160 sp.) in
the reptilian order Squamata, named for their scaly skin
(Zug et al. 2001; Uetz 2003). Snakes are divided into two
main groups. The scolecophidians (‘blindsnakes’) are bur-
rowing species with small gape size and feed on small prey
(mainly ants and termites). The alethinophidians (‘typical
snakes’) are more ecologically diverse and most species
feed on relatively large prey, primarily vertebrates
(Cundall & Greene 2000; Vidal & Hedges 2002b). In
addition to the more obvious characteristics of body
elongation and loss of limbs, other features of living snakes
include absence of eyelids and external ears and the pres-
ence of deeply forked tongues (Coates & Ruta 2000).

Two main hypotheses have been proposed and debated
concerning the ancestral mode of the life of snakes: a ter-
restrial (burrowing or semi-burrowing) origin (Camp
1923; Mahendra 1938; Walls 1940) and a marine origin
(Cope 1869; Nopcsa 1923; Caldwell & Lee 1997; Lee
1997; Lee & Scanlon 2002). This controversy, which has
implications for understanding the evolution of locomotor
and feeding systems in squamate reptiles (Gans 1961;
Cundall & Greene 2000), has recently been fuelled by the
discovery or reanalysis of fossils of three marine snake
species (‘pachyophiids’) with small but well-developed
hindlimbs (genera Pachyrhachis, Haasiophis and
Eupodophis) (Caldwell & Lee 1997; Rage & Escuillié 2000;
Tchernov et al. 2000; Rieppel et al. 2003).

According to the terrestrial hypothesis, the character-
istics that define snakes were acquired in ancestors that
were burrowing or semi-burrowing (Walls 1940). A close
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relationship between snakes and some burrowing squam-
ates that are limbless or have reduced limbs, such as
amphisbaenians and/or dibamids (Rieppel & Zaher 2000b;
Zaher & Rieppel 2000; Kearney 2003), has been con-
sidered as support for the terrestrial hypothesis, but this
is not required. Specializations shared by snakes, amphis-
baenians and dibamids include the loss, reduction and
consolidation of skull bones; braincase enclosure; loss or
reduction of limbs and girdles; and increased uniformity
along the vertebral column (Coates & Ruta 2000). The
terrestrial origin hypothesis agrees with data derived from
the sensory system of living snakes and in particular with
the peculiarities of their eyes (Walls 1940). Under this
hypothesis, the fossil marine snakes (pachyophiids) are
considered to be derived alethinophidian snakes and
therefore to have no particular bearing on snake origins.
This derived position of pachyophiids implies either a re-
evolution of the limbs or several independent losses of
limbs in living snake lineages (Greene & Cundall 2000;
Rieppel et al. 2003). The latter has been a common theme
among vertebrates in general and squamates in particular
(Greer 1991).

According to the marine hypothesis, snakes are derived
varanoids, a group that includes several families of extinct
marine reptiles (mosasauroids) such as aigialosaurs, dol-
ichosaurs and mosasaurs and two living families of terres-
trial lizards, the Helodermatidae (genus Heloderma) and
Varanidae (genera Lanthanotus and Varanus) (Lee 1997,
1998, 2000; Lee et al. 1999; Lee & Caldwell 2000). Under
the marine hypothesis, the varanid lizards would be the
closest living relatives of snakes. This result has also been
suggested in molecular analyses using mitochondrial
genes, although always with limited taxon sampling and
usually not with robust statistical support (Forstner et al.
1995; Macey & Verma 1997; Rest et al. 2003). When
mosasauroids are taken into account in morphological
analyses, they form a paraphyletic branching pattern lead-
ing to snakes, and are thus closer to snakes than are varan-
ids (Lee & Caldwell 2000). The group comprising snakes
and mosasauroids, to the exclusion of other varanoids, is
called Pythonomorpha (Cope 1869; Lee 1997) and is
based on the sharing of presumably derived characters of
the skull, the lower jaw and the dentition. According to
this scheme, the extinct marine pachyophiids are con-
sidered to be intermediates between limbed marine squa-
mates (mosasauroids) and living snakes (Lee & Caldwell
2000; Lee & Scanlon 2002). This basal position of both
marine groups of squamates implies a marine-to-terrestrial
transition leading to living snakes, an event otherwise
unknown to have occurred within tetrapods.

2. METHODS
We used sequences from two protein-coding nuclear genes, recom-

bination-activating gene 1 (RAG1) and oocyte maturation factor (C-
mos), obtained from all 19 families of living lizards and amphisbaeni-
ans (Zug et al. 2001) and 17 out of the 25 families of living snakes
(Vidal & Hedges 2002a,b). The usefulness of C-mos for resolving
interfamilial squamate relationships is well known (Saint et al. 1998;
Vidal & Hedges 2002a,b), although RAG1 has until now never, to
our knowledge, been sequenced in squamate reptiles despite its
potential for resolving various higher-level vertebrate relationships
(Venkatesh et al. 2001). Maximum-likelihood (ML), Bayesian infer-
ence, minimum evolution (ME) and maximum-parsimony (MP)
methods were used to analyse the RAG1 and C-mos sequences of 64
species, both separately and combined. Details of the samples used,
methods for obtaining and sequencing the DNA and methods of
phylogenetic analysis are detailed in electronic Appendix A, available
on The Royal Society’s Publications Web site.
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Figure 1. (Caption overleaf.)
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Figure 1. Phylogenetic relationships of snakes, lizards and
amphisbaenians inferred from DNA sequences of the nuclear
genes RAG1 and C-mos. For the critical node
(Anguimorpha), values for all four tree-building methods are
shown in the following order: bootstrap support values from
ML, MP, ME and Bayesian posterior probabilities. For
other nodes, bootstrap support values from MP are shown,
followed by Bayesian posterior probabilities. Support values
above 50% are shown at nodes in the Bayesian consensus
tree; a dash indicates a node not appearing in the bootstrap
consensus MP tree. An asterisk identifies a lineage with
small gaped species, and the box indicates the taxon
(Varanidae; monitor lizards) believed to be the closest
relative of snakes under the marine hypothesis. The tree is
rooted with a tuatara (Sphenodon) and turtle. Detailed results
for all methods are in electronic Appendix A.

3. RESULTS
The resulting phylogenetic trees show remarkable con-

sistency among different methods of analysis (figure 1;
electronic Appendix A). Snakes are monophyletic and the
basic division of Scolecophidia and Alethinophidia is
retrieved. Relationships within snakes are similar to that
seen in more focused analyses of snake phylogeny with
additional genes (Vidal & Hedges 2002a,b). Among liz-
ards, the Gekkonidae (including gekkonines and limbless
pygopodinines) is monophyletic. The large infraorder
Iguania (Agamidae, Chamaeleonidae, Iguanidae) also
forms a single clade in all analyses except ML. Other sig-
nificant groupings are Anguimorpha (Varanidae, Heloder-
matidae, Xenosauridae, Anguidae), a cluster containing
Teiidae, Gymnophthalmidae and Lacertidae with the four
families of amphisbaenians (Amphisbaenidae, Trogono-
phidae, Bipedidae and Rhineuridae), and another group
containing Cordylidae, Xantusiidae and Scincidae. The
Dibamidae (‘blindskinks’) are the closest relatives of the
Scincidae in the ME and ML trees, while they appear as a
basal lineage in the MP and Bayesian trees (see electronic
Appendix A).

Our results (figure 1) show that Varanus is allied with
the remaining anguimorph lizards (Helodermatidae,
Xenosauridae and Anguidae) to the exclusion of snakes
(support values for the ML, MP, ME and Bayesian analy-
ses are 98, 95, 98 and 100, respectively). Our phylogeny
also rejects the association of snakes and amphisbaenians
(support values of 95, 85, 79 and 100). The clustering
of snakes with iguanian lizards (figure 1) is not strongly
supported, but is curious because of their presumed
Gondwanan ancestry and some shared similarities of the
chromosomes, skull, vertebral column, inner ear, urinary
bladder (absence) and oral glands (Bellairs & Underwood
1950; Rieppel 1988).

4. DISCUSSION
The exclusion here of snakes from varanoids under-

mines the marine hypothesis of snake origins because it
breaks the proposed transition from marine squamate rep-
tiles (mosasauroids) to early marine snakes (pachyophiids)
(Caldwell & Lee 1997; Lee 1997; Lee & Caldwell 2000).
Based on morphology, the mosasauroids are closely asso-
ciated with varanoids, while the pachyophiids are closely
associated with living snakes (either basal or derived
within Alethinophidia) (Baur 1890; Camp 1923;
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Figure 2. Summary tree showing the phylogenetic
relationships, inferred in this study, of snakes to other living
squamate reptiles. The positions of the two groups of fossil
marine squamates are shown (hollow bars), as based on
morphological evidence. The fossil marine snakes
(pachyophiids) are related to living snakes, either basally or
as members of a derived lineage. The mosasaurs, however,
are closely related to varanoid lizards. The common
ancestors of all lineages shown are believed to be terrestrial,
with two inferred transitions (arrows) to the marine
environment.

McDowell & Bogert 1954; Carroll & deBraga 1992;
deBraga & Carroll 1993; Lee 1997; Lee et al. 1999; Lee &
Caldwell 2000; Rieppel & Zaher 2000b; Tchernov et al.
2000), implying two independent terrestrial to marine
transitions under this new phylogenetic scheme (figure 2).

By itself, a morphological connection between snakes
and varanoids was not robust because snakes are so highly
modified that they cannot be coded for some characters
diagnostic of varanoids and they lack a unique character
of varanoids (a surangular with a blunt anterior tip) (Lee
1997). Likewise, a close relationship between snakes and
mosasaurs also was not well supported. Similarities in the
structure of their jaws, such as the intramandibular joint,
have been shown to be convergent (Rieppel & Zaher
2000b) and other presumed shared traits have been ques-
tioned (Fraser 1997; Zaher & Rieppel 1999; Rieppel &
Zaher 2000a; Rieppel et al. 2003). Of course, without a
mosasauroid–varanoid link, the disassociation of snakes
and varanids would not challenge the marine hypothesis.
However, with rare exceptions (Caldwell et al. 1995;
Caldwell 1999), morphological analyses have unambig-
uously supported a close relationship between mosasaurs
and varanoids (Baur 1890; Camp 1923; Nopcsa 1923;
McDowell & Bogert 1954; Russell 1967; Carroll &
deBraga 1992; deBraga & Carroll 1993; Lee 1997; Lee et
al. 1999; Lee & Caldwell 2000; Rieppel & Zaher 2000b).

The current molecular evidence (figure 1) is unable to
clarify all of the branches of the squamate phylogenetic
tree or robustly identify the closest lineage to snakes,
except to exclude varanoids, amphisbaenians and prob-
ably dibamids (assuming the association of the latter with
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skinks). Nonetheless, the significant exclusion of snakes
from varanoids is in itself sufficient to support a terrestrial
origin of snakes, because no other marine connection has
been suggested or is likely. This is true regardless of the
affinities of snakes among remaining lineages of squam-
ates. Within the terrestrial environment, the origin of
snakes has been most often associated with the under-
ground niche by drawing parallels with characteristics of
burrowing (fossorial) lizards. However, it has been
debated as to whether the ancestors of snakes were fully
fossorial and constructed their own burrows or were semi-
fossorial and occupied burrows constructed by other ani-
mals (Camp 1923; Walls 1940; Bellairs & Underwood
1950; Rieppel 1988). Further insight into this question,
and the evolution of the locomotor and feeding systems
of snakes in general, may come with a more robust phy-
logeny of squamates and additional Mesozoic fossils.
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